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A B S T R A C T

What makes objects alike in the human mind? Computational approaches for characterizing object similarity
have largely focused on the visual forms of objects or their linguistic associations. However, intuitive notions of
object similarity may depend heavily on contextual reasoning—that is, objects may be grouped together in the
mind if they occur in the context of similar scenes or events. Using large-scale analyses of natural scene statistics
and human behavior, we found that a computational model of the associations between objects and their
scene contexts is strongly predictive of how humans spontaneously group objects by similarity. Specifically,
we learned contextual prototypes for a diverse set of object categories by taking the average response of a
convolutional neural network (CNN) to the scene contexts in which the objects typically occurred. In behavioral
experiments, we found that contextual prototypes were strongly predictive of human similarity judgments for
a large set of objects and rivaled the performance of models based on CNN representations of the objects
themselves or word embeddings for their names. Together, our findings reveal the remarkable degree to which
the natural statistics of context predict commonsense notions of object similarity.
1. Introduction

Our understanding of the similarities between objects allows us to
group them in meaningful ways and underlies behaviors ranging from
freeform associative thinking to the creation of scientific taxonomic
systems (Goldstone & Son, 2012). Because objects can be compared
in myriad ways, there is no single definition of similarity—rather,
it is highly task-dependent. Nonetheless, when humans reason about
objects, the similarities that spontaneously come to mind are largely in
agreement across individuals, demonstrating that there is systematicity
in our intuitions about what makes objects alike (Hebart et al., 2019;
Peterson et al., 2018).

Similarity judgments are of broad interest in the cognitive, neural,
and computational sciences because they provide a window into the
mental representation of concepts. They have been used to test theories
of concept learning and generalization (Shepard, 1987; Shepard &
Arabie, 1979), to characterize the representational dimensions of the
mind (Greene et al., 2016; Hebart et al., 2019, 2020; Jozwik et al.,
2017; Mur et al., 2013; Peterson et al., 2018; Tarhan et al., 2021), to
identify the neural bases of concepts (Dima et al., 2022; King et al.,
2019; Mur et al., 2013; Tarhan et al., 2021), and to assess the quality
of object and word representations in computational systems (Baroni
et al., 2014; Jozwik et al., 2017; Roads & Love, 2020). Across all
these disciplines, a major focus has been on the similarity responses
that observers spontaneously provide when task instructions do not
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specify the dimensions along which stimuli should be compared. These
spontaneous similarity judgments are of primary theoretical interest
because they reflect the core representational dimensions that underlie
our intuitive understanding of the relationships among objects. It is
these intuitions about object similarity that we set out to model in the
current work.

In seeking to understand how similarities are represented in the
mind, a key objective is the development of computational models that
can account for human behavior (Hebart et al., 2019, 2020; Jozwik
et al., 2017; Peterson et al., 2018). Computational models ground
psychological theories in the language of mathematics, they provide
insight into the statistical and geometric principles of mental repre-
sentations, and they are well-suited for characterizing the complex,
multifaceted properties of natural stimuli. To model the similarities
between objects, previous computational approaches have largely fo-
cused on convolutional neural network (CNN) representations of object
images, which characterize their high-level visual features, or word
embeddings for object names, which characterize their co-occurrence
with other words in written language (Hebart et al., 2019, 2020; Jozwik
et al., 2017; Peterson et al., 2018). However, these approaches have
overlooked a major component of object representations in the mind:
contextual associations.

Objects are often encountered in a highly regular set of scene
contexts (e.g., refrigerators are often found in kitchens). There is both
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psychological and neural evidence that humans use these contextual
regularities to facilitate object recognition and to generate predictions
during perception (Aminoff & Tarr, 2015; Bar & Aminoff, 2003; Bieder-
man et al., 1982; Bonner & Epstein, 2021; Davenport & Potter, 2004;
Lauer et al., 2021; Oliva & Torralba, 2007; Palmer, 1975). Furthermore,
recent work has shown that CNNs trained on object classification also
learn this contextual information, and they do so in a manner that is
highly consistent with explicit human judgments of contextual similar-
ity (Aminoff et al., 2022; Bracci et al., 2022). Despite the importance
of contextual regularities in object perception, we do not yet have
answers to fundamental questions about the role of context in the kinds
of intuitive similarity judgments that are often used to assess object
representation (Greene et al., 2016; Hebart et al., 2019, 2020; Jozwik
et al., 2017; Mur et al., 2013; Peterson et al., 2018; Tarhan et al., 2021).
First, to what degree do these contextual regularities explain human
behavior in intuitive similarity judgments? And second, how can these
regularities be computationally modeled?

Here we set out to answer these questions by determining whether
human behavioral judgments of object similarity could be explained
by the natural statistics of object context. To accomplish this, we
developed a novel computational approach for characterizing the rich
contextual associations of natural objects, and we collected sponta-
neous judgments of object similarity for a diverse set of object cate-
gories. Specifically, our modeling approach leveraged a large dataset of
annotated images to quantify the co-occurrences between objects and
scene contexts. We used this dataset to construct contextual-prototype
representations based on CNN responses to the scene contexts them-
selves. These contextual prototypes capture the rich visual and semantic
information that can be learned from the scenes in which an object is
typically encountered. For comparison, we also examined object-based
representational models constructed from CNN responses to the objects
themselves or from word embeddings for their names in language.

To anticipate our results, we found that the statistical regularities
captured by our contextual model were highly predictive of sponta-
neous behavioral judgments of object similarity and rivaled object-
based models that used images of the objects or their associated word
embeddings. Furthermore, we observed a dissociation under different
task conditions: while the contextual model performed well at ex-
plaining spontaneous similarity judgments, it was outperformed by the
object-based models at explaining shape similarity judgments. Thus,
our findings show that contextual prototypes specifically emphasize the
core representational dimensions that come to mind when participants
intuitively group objects based on their similarities. These findings
reveal the remarkable degree to which the natural statistics of context
can predict human intuitions about object similarity.

2. Methods

2.1. Behavioral experiments

2.1.1. Overview
We sought to explain how humans spontaneously group objects

according to their similarities. To do so, we collected behavioral data in
the form of a multi-arrangement task, in which participants were asked
to arrange images of objects on a 2D display, such that nearby objects
are more similar (Fig. 1). We were primarily interested in how partic-
ipants judged similarity in an unguided task without being instructed
to focus on any specific object attributes. For our first experiments, we
therefore did not instruct participants on how to evaluate similarity,
other than explaining the basic mechanics of the task. We refer to this
as an intuitive similarity task because it relies on the participants’ in-
tuitions about the core factors that define similarity. The object images
came from a previously published study and included 81 categories of
objects encountered in everyday real-world scenes (Bonner & Epstein,
2021). The object categories in this stimulus set were specifically cho-
2

sen because they appear in the image annotations of the ADE20K scene o
database, which we used to model contextual associations (Zhou et al.,
2019). We also conducted follow-up experiments with new participants
and stimuli to determine if our findings could generalize to objects
sampled from a more object-centric database—specifically, the COCO
database (Lin et al., 2015). Thus, throughout the manuscript, we report
findings from two sets of experiments using object categories sampled
from ADE20K and COCO. The categories from both stimulus sets are
listed in Supplementary Table 1.

While our primary hypothesis was that intuitive judgments of sim-
ilarity could be explained by context, we also predicted that these
intuitive judgments would differ from another salient form of similar-
ity: the similarity of object shapes. Shape is a fundamental property
of objects that is strongly represented throughout the ventral stream
of visual cortex (Bracci & Op de Beeck, 2016; Kourtzi & Kanwisher,
2000; Proklova et al., 2016). Local shape features are also encoded
in CNN representations (Kubilius et al., 2016; Zeman et al., 2020),
and shape has been a major focus in the computational modeling of
object similarity (Hebart et al., 2019; Jozwik et al., 2017; Peterson
et al., 2018). We, therefore, conducted a second multi-arrangement
experiment in which participants were asked to arrange images of
objects on a 2D display based specifically on the similarity of their
shapes (Fig. 1). The stimuli and methods for this experiment were
identical to the intuitive-similarity task, except for the instructions and
practice trials, which asked participants to specifically evaluate shape
similarity.

2.1.2. Participants
80 participants were recruited through the online platform Pro-

lific (https://www.prolific.co/) and redirected to perform a multi-
arrangement task on the Meadows Research platform (https://mead
ows-research.com/). Four separate experiments were performed: two
experiments with object categories from ADE20K and two experiments
with object categories from COCO. Twenty participants were assigned
to each experiment. Participants gave informed consent in compliance
with procedures approved by the Institutional Review Board at Johns
Hopkins University. One participant from the shape-guided COCO
experiment was excluded before data analysis due to technical issues
that prevented the correct retention of their data.

2.1.3. Stimuli
ADE20K stimulus set. The stimuli consisted of 81 inanimate object

ategories, with one item per category (all categories are listed in
upplementary Table 1). All stimuli depicted isolated objects on a
hite background. The images were taken from a previously developed

timulus set (Bonner & Epstein, 2021). The object categories in this
xperiment were chosen because they can also be found in the ADE20K
atabase of scene images, which have been densely segmented and
nnotated for their constituent objects (Zhou et al., 2014) (https://
roups.csail.mit.edu/vision/datasets/ADE20K/).
COCO stimulus set. The stimuli consisted of 77 object categories

including both inanimate and animate categories), with one item
er category (all categories are listed in Supplementary Table 1). All
timuli depicted isolated objects on a white background. The object
ategories in this experiment were chosen because they can also be
ound in COCO (https://cocodataset.org/#home), a large-scale object
mage database (Lin et al., 2014). Images for these object categories
ere hand-selected based on a search of freely available images.

.1.4. Multi-arrangement task
Participants completed a multi-arrangement task adapted from

riegeskorte and Mur (2012). Objects from the stimulus set were
resented to the right and left of a circular arena. Participants were
equired to drag the objects inside the arena according to their sim-
larity, so that more similar objects were closer together and more
issimilar objects were farther apart. We ran two separate versions
f this experiment for each of the two object datasets, for a total of
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Fig. 1. Multi-arrangement tasks for intuitive similarity and shape similarity. Top: Example trial of the multi-arrangement task for the ADE20K experiments. Lower left: Behavioral
RDM based on data from the intuitive similarity task, along with a 2D visualization of this similarity space (using multidimensional scaling). Lower right: Behavioral RDM based
on data from the shape similarity task, along with a 2D visualization.
four separate experiments with independent groups of participants. The
two versions of this experiment differed on how the participants were
instructed to judge similarity:

• Intuitive sorting task. Participants were instructed to arrange ob-
jects by similarity. We did not specify which factors to consider
when evaluating similarity.

• Shape sorting task. Participants were instructed to arrange objects
by their shape similarity, and they were asked to ignore all other
aspects of similarity.

In a pilot study of the shape sorting experiment, we observed that
participants would often dismiss shape and resort to intuitive similarity
if not thoroughly instructed. Thus, we provided an additional practice
trial before the start of the experiment in which participants had to ar-
range four simple geometrical shapes (a blue square, a yellow hexagon,
a red parallelogram, and a red circle) based on shape similarity. After
the practice trial, feedback was provided by displaying one of the pos-
sible meaningful arrangements that captured shape similarity. Adding
this additional practice trial at the beginning ensured that participants
clearly understood the task before starting the experiment.

All experiments took place over several trials. Participants could
advance to the next trial only when all objects were inside the arena.
On the first trial, all objects were presented, while on the subsequent
trials the number of objects presented at once could vary based on
the accumulated weighted evidence estimated for each object pair (as
described in Kriegeskorte & Mur, 2012). At the end of each trial,
the object pairs for which the weighted evidence was the least were
selected to be presented on the next trial. This procedure was repeated
for each trial until the object pair with the smallest evidence weight
3

was above the evidence weight threshold of 0.5 (selected based on
prior literature), at which point the experiment terminated. If such
a threshold was not reached, the experiment would terminate after
60 min, excluding time for breaks. For the ADE20K dataset, the 0.5
threshold was reached by all participants for the shape task, and by 11
of the 20 participants for the intuitive task. For the COCO dataset, the
0.5 threshold was reached by 12 of the 19 participants for the shape
task, and by 12 of the 20 participants for the intuitive task. The output
data for each experiment consisted of the lower triangle of a matrix re-
flecting the distance between each pair of the object categories inferred
from the distances between images in the experimental trials (inverse
multidimensional scaling algorithm, see Kriegeskorte & Mur, 2012
for details). We refer to these distance matrices as representational
dissimilarity matrices (RDMs). For our main analyses, we averaged
the RDMs across participants to produce a group-level RDM for each
experiment. We additionally report participant-level analyses using the
individual participant RDMs in the Supplementary Material.

2.2. Computational models

2.2.1. Overview of image-based models
We set out to test the hypothesis that intuitive judgments of object

similarity could be explained by the contextual regularities of the
environment, such that objects that tend to occur in the same contexts
would be judged as similar. To accomplish this, we developed a mod-
eling approach for characterizing the high-level contextual associations
of objects based on the scene contexts in which they are typically
encountered. We took advantage of the ADE20K database (Zhou et al.,
2019), which contains 22,210 natural scene images with corresponding
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Fig. 2. Image-based representational models. This schematic depicts the extraction of CNN features for the object-image model (A), the object-prototype model (B), and the
contextual-prototype model (C). The stimuli shown here come from the ADE20K experiments. For all models, we extracted feature activations from an AlexNet CNN pre-trained on
ImageNet. Features were extracted at each layer of AlexNet and concatenated across all layers. RDMs were created by computing the squared Euclidean distances of the feature
vectors for all pairs of object categories. For the object-image model, we extracted CNN activations for the exact images that were presented to participants in the behavioral
experiments. For the object-prototype model, we sought to obtain an average CNN representation of object-related features based on many instances of each object category. To
accomplish this, we retrieved images of each object category from the ADE20K or COCO databases, masked the image backgrounds to leave only the segmented object intact,
and extracted the average CNN activation vectors across all images for each category. For the contextual-prototype model, we sought to obtain an average CNN representation of
context-related features for each object category. To accomplish this, we used the ADE20K database to retrieve sample images of the scene contexts associated with each object.
Importantly, these context images never contained the target object. We then extracted the average CNN activation vectors across all context images for each object.
human annotations for their constituent objects (e.g., notebook, desk)
and overall scene categories (e.g., office). For each object category, we
obtained CNN responses to sample images from its associated scene
contexts, and we computed the average CNN representation across
these context images, weighted by the frequency of association between
the object and scene categories. Importantly, the context images never
contained the object being modeled. Instead, we selected other images
from the same scene categories that happened to not contain the object
of interest. For example, when obtaining context images for the object
notebook, we only used images of offices and other related contexts
that happen to not contain notebooks. Thus, our modeling procedure
emphasizes information associated with the scenes in which the objects
are found rather than the features of the objects themselves.

Our context representations are based on CNN responses to the
context images for each object category. CNNs are the leading com-
putational models of the human visual system, and they are well-
suited for extracting high-level visual representations from natural
images (Agrawal et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014).
We used an AlexNet CNN pre-trained on ImageNet, though, as we
report in the Results, similar findings were obtained with a differ-
ent pre-training dataset. The average CNN representations generated
from our procedure are statistical summaries of the scene contexts in
which objects are encountered, and we refer to these representations
as contextual prototypes (Fig. 2C).

For comparison, we also created two object-based CNN models
(Fig. 2A and 2B). The first was based on CNN representations of the
actual object images used in the behavioral experiments, which we
refer to as the object-image model. This model closely resembles how
others have used CNNs in previous work to characterize object similar-
ity (Hebart et al., 2019; Jozwik et al., 2017; Peterson et al., 2018). The
4

second was an object-prototype model, which was a complement to our
contextual-prototype model. For each object, we used the ADE20K or
COCO image database to retrieve all images containing instances of the
object category. We then used segmentation data to mask all pixels ex-
cept for those containing the object (see examples in Fig. 2). We passed
these masked images to the CNN and computed the average across
all instances to generate an object prototype representation. Much like
the contextual prototypes, these object prototypes reflect a statistical
summary across a large sample of images. However, they emphasize
the features of the objects themselves rather than the contexts in which
they are encountered.

2.2.2. Image-based model details
For all three image-based models, we extracted feature activations

from ImageNet-pre-trained AlexNet (Pytorch implementation) at each
layer. For the convolutional layers, we applied global max-pooling to
focus on feature properties rather than spatial properties. For our main
analyses, these feature activations were concatenated across layers
(all 5 convolutional layers and 3 fully connected layers) and used to
build an RDM reflecting feature information across the entire network
hierarchy. We also report layerwise versions of these models in the
supplement in which we constructed separate RDMs for each layer.
All model RDMs were constructed by computing pairwise squared Eu-
clidean distances of feature-activation vectors. The feature activations
were first z-scored by items and by features before building the RDM.

For the object image model (Fig. 2A), all images from the ADE20K
stimulus set and the COCO stimulus set were submitted to AlexNet to
obtain feature activations and to compute RDMs.

For the object prototype model (Fig. 2B), we took advantage of the
way in which the object categories in our stimulus set were selected:
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the ADE20K object categories were obtained from the ADE20K image
database, and the COCO object categories were obtained from the
COCO image database. ADE20K comprises 22,210 images containing
labels for 3148 unique object labels and 871 unique scene labels. Each
image is densely annotated by a human observer, providing segmen-
tations and labels for objects in every scene. For each object category
in this stimulus set, we used the set of labels from ADE20K that were
specified in Bonner and Epstein (2021), which included variations of
the object names (e.g., bath, bath tub, bathtub) as well as plural forms.
COCO comprises 330 K images from 80 object categories and 91 stuff
categories, with segmentation masks for each object class. To create
object-prototype representations, we identified all images containing
a given object and used the corresponding object segmentation data
to mask all pixels not containing the object with a uniform gray
background. When multiple instances from the same object category
were present in an image, all instances were left intact and other
pixels were masked. These masked images were submitted to AlexNet to
obtain feature activations, which were then averaged across all images
associated with each object category. An RDM was built based on the
distances between the average category-level activations.

For the contextual prototype model (Fig. 2C), we sought to examine
images of the scene categories in which the objects are typically en-
countered while avoiding images that contained instances of the objects
themselves. To accomplish this, we took advantage of the fact that the
images in the ADE20K database contain labels for both the objects
within each scene and the category of the scene itself. Specifically,
for each object category, we identified all images with an instance of
that object and counted the frequency of these images in each scene
category (e.g., the object pen occurred in 100 office scenes, 10 kitchen
scenes, and so on). For each of these images, we obtained an alternative
image with the same scene-category label but with the constraint that
the alternative image could not contain an instance of the target object
(e.g., we obtained 100 office scenes without a pen, 10 kitchen scenes
without a pen, and so on). Beyond these constraints, the alternative
images were chosen randomly. If ADE20K did not include enough al-
ternative scene images without the target object, we randomly sampled
with replacement from the available images within a scene category
(e.g., if we needed 100 offices without pens but there were only 90
such office images, we randomly sampled 100 images with replacement
from the 90 available images). This ensured that the frequency of
each scene category was preserved. The resulting set of images served
as context images for the target object. Contextual prototypes were
created by passing these context images to AlexNet and performing
the same pooling and averaging procedures as in the object-prototype
model. The average feature activations from AlexNet were then used to
compute an RDM.

To compute contextual-prototype representations in the same way
for the COCO stimulus set, we needed to combine and remove some of
the object categories. This became necessary because we changed our
procedure for computing contextual prototypes after we had already
collected behavioral data for the COCO experiments. Specifically, in
our original procedure for computing contextual prototypes, we cre-
ated a set of context images by masking the targets objects in their
original images rather than by obtaining alternative images without
the target objects. However, we wanted to rule out the possibility
that our findings could be explained by object shape properties that
might be preserved by the masking procedure, such as size, aspect
ratio, and coarse shape features. We therefore developed a cleaner
approach of obtaining alternative images without the target objects (as
described for the stimuli in the ADE20K experiments), which allowed
us to completely avoid using masks. For this updated contextual-
prototype procedure, we needed to obtain alternative context images
from ADE20K for each object category in the COCO stimulus set. Some
of the COCO object labels were not present in ADE20K or were only
present in a small number of images. To overcome these issues, we
5

reduced the original 77 categories in our COCO stimuli to a new set
of 48 categories, each of which occurred in at least 49 images in the
ADE20K dataset (49 being the lowest number of images we had across
all categories in the ADE20K experiments). Supplementary Figure S1
specifies how we created this reduced set of 48 object categories,
which involved combining and removing some of the original 77
categories. To match the RDMs across all COCO analyses, we reduced
all behavioral and model RDMs of COCO stimuli to the same set of 48
categories.

We directly compared these representational models by computing
the correlations of their RDMs (see Supplementary Fig. S2 for a visual-
ization of the RDMs). We found that the correlation of the contextual-
prototype model with each of the object-based models was lower than
the correlation between the two object-based models, suggesting that
the contextual prototypes capture information that is partially distinct
from representations of the objects themselves (contextual prototype
and object image: 𝜌 = 0.20; contextual prototype and object prototype:
𝜌 = 0.19; object prototype and object image: 𝜌 = 0.33). We observed
a similar result for the COCO objects (contextual prototype and object
image: 𝜌 = 0.18; contextual prototype and object prototype: 𝜌 = 0.22;
bject prototype and object image: 𝜌 = 0.52).

2.2.3. Distributional models
We examined models of the distributional semantics of our cat-

egories based on word co-occurrence in language, using word2vec
(Mikolov, Chen, et al., 2013) and object co-occurrence in images, using
object2vec (Bonner & Epstein, 2021). For word2vec, we obtained a
set of 300-dimensional embeddings trained on the Google News cor-
pus (https://code.google.com/archive/p/word2vec/). For object2vec,
we obtained a set of 8-dimensional embeddings trained on the im-
age annotations from ADE20K, which contain information about the
co-occurrence of object labels in densely annotated natural scenes
(https://osf.io/ug5zd/). Details of the object2vec model can be found
in Bonner and Epstein (2021). We computed RDMs for word2vec
and object2vec in the same manner as our CNN models, by first z-
scoring across items and channels and then computing pairwise squared
Euclidean distances.

2.3. Representational similarity analysis

To compare the representations of our computational models to
the behavioral similarity data, we performed representational similarity
analysis (RSA) by calculating correlations (Spearman’s 𝜌) of the model
and behavioral RDMs. Bootstrap-resampling distributions of these cor-
relations were calculated over 5000 iterations in which the rows and
columns of the RDMs were randomly resampled. This is effectively
a resampling of the stimulus labels in the RDM. Resampling was
performed without replacement by subsampling 90% of the rows and
columns of the RDMs. Statistical significance was assessed through a
permutation test over 5000 iterations in which the rows and columns of
one of the RDMs were randomly permuted and a correlation coefficient
was calculated to generate a null distribution. The 𝑝-value for an
observed RSA correlation was computed as the ranked percentile of the
correlation coefficient relative to this null distribution.

2.3.1. Noise ceiling estimation
Noise ceilings for the RDMs from the behavioral tasks were com-

puted by performing an iterative (n = 5000) split-half reliability anal-
ysis. At each iteration, participants were split into two random groups
and their average RDMs were correlated using Spearman’s rank cor-
relation coefficient (𝜌), with the correlation value corrected using the
Spearman–Brown prophecy formula. We found that the RDMs were
highly reliable across participants for all four behavioral experiments
(average split-half reliability across 5000 iterations: 𝜌 = 0.68 for

DE20K intuitive task, 𝜌 = 0.68 for COCO intuitive task, 𝜌 = 0.64 for

ADE20K shape task, 𝜌 = 0.65 for COCO shape task).

https://code.google.com/archive/p/word2vec/
https://osf.io/ug5zd/
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2.3.2. Model comparisons
We tested differences in the RSA correlations for different models

using a permutation procedure. For each pair of models, we computed
the true difference in their RSA correlations with a behavioral RDM.
We then randomly shuffled the behavioral RDM, correlated it with the
two model RDMs, and computed the difference between the two RSA
correlations. This operation was repeated 5000 times to build a null
distribution of difference scores. We then calculated the 𝑝-value of the
true difference relative to this null distribution.

2.3.3. Variance partitioning analyses
We used multiple linear regression and a variance-partitioning pro-

cedure to quantify the overlap of explained variance for the predictor
RDMs. The multiple linear regression analyses included regressors for
the predictor RDMs and a constant term. These regressors were used to
explain variance in the behavioral RDMs, which served as dependent
variables. Thus, the data points for the dependent and independent
variables were the pairwise distance measurements of the RDMs. We
quantified the overlap of explained variance for the predictor RDMs
using a procedure known as commonality analysis (Bonner & Epstein,
2018; Nimon et al., 2008; Nimon & Oswald, 2013). This procedure
partitions the explained variance of the regression model into the
shared and unique components contributed by the predictor RDMs.
The variance partitions were calculated using standard partitioning
formulas for three predictor variables (Nimon et al., 2008, 2017).
To express the variance partitions as percentages, we divided each
partition by the total explained variance for all three predictor RDMs
combined.

3. Results

3.1. Contextual prototypes are strong predictors of intuitive similarity judg-
ments

To determine whether the object similarities in our representational
models matched the similarities obtained from human behavioral data,
we computed correlations between the RDMs for our models and
the RDMs for the multi-arrangement tasks. We first examined data
from the intuitive-similarity task, in which participants spontaneously
grouped objects based on their intuitions about similarity (Fig. 1).
For our initial experiment using objects from ADE20K, we found that
the contextual-prototype RDM was significantly correlated with the
behavioral RDM for the intuitive similarity task and outperformed
both of the object-based CNN models (Fig. 3A; see Supplementary
Fig. S3A for participant-level results). Further, we observed that the
object-prototype model performed worse than both the object-image
and contextual-prototype models. We also examined layerwise results
for all models by using individual layers of AlexNet as feature vectors
(Supplementary Fig. S4A). The contextual prototype model was highly
consistent across all layers, which aligns with previous work suggest-
ing that contextual information can be captured by low-level scene
statistics (Oliva & Torralba, 2007), whereas the object models generally
showed a slight improvement at higher layers.

While we hypothesized that the contextual-prototype model would
be competitive with object-based models, we were surprised to observe
such a strong advantage for the contextual prototypes. We wondered if
this result could be related to two properties of the ADE20K database.
The first is that the definition of ‘‘object’’ in ADE20K is broad and
includes not only discrete objects, like mug and car, but also extended
surfaces, like road and grass, which may have much stronger contextual
associations than discrete objects. The second is that many of the
objects in ADE20K are visually small, given that they occur in the
context of large-scale scenes (e.g., a pen is a small visual element of
an office scene). As a result, the performance of the object-prototype
model could potentially be hampered by the use of zoomed-out object
images from ADE20K. To address these issues, we ran a separate
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experiment using a new set of stimuli that were all discrete objects
with high-quality, close-up images in the COCO image database. In
this follow-up experiment, we found that the contextual-prototype RDM
was once again significantly correlated with the behavioral RDM, but,
importantly, the performance of the contextual-prototype model was
equivalent to the object-based models rather than being strongly supe-
rior, suggesting that contextual prototypes match object-based models
but do not generally outperform them (Fig. 3A and Supplementary
Fig. S3A). When performing the analyses layerwise, the results were
similar to those in the ADE20K data, with consistent effects for the
contextual prototype model across layers and a slight improvement at
higher layers for the object models (Supplementary Fig. S4A).

We next performed variance partitioning analyses to quantify the
shared and unique explained variance of contextual and object-related
information. In both the ADE20K and COCO data, we found that
while the contextual and object-based models explained some degree
of shared variance, they also explained substantial amounts of disjoint
variance (Fig. 4A and see Supplementary Table 2 for explained variance
values for all partitions). This suggests that contextual and object-
related information account for partially distinct aspects of intuitive
similarity judgments.

In sum, across two experiments using different sets of objects sam-
pled from different image databases, we found that contextual pro-
totypes performed as well as or better than models of the objects
themselves. Furthermore, in follow-up analyses, we observed similar
results using a different CNN that was pre-trained on the Places dataset
rather than ImageNet (Supplementary Fig. S5) (Zhou et al., 2014),
demonstrating that these findings generalize beyond the specific CNN
presented here. Together, these results demonstrate a striking phe-
nomenon of object representation: intuitions about object similarity can
be explained equally well by models that directly represent the objects
themselves or by models that ignore the objects and simply represent
the scene contexts in which they are typically encountered.

3.2. Contextual prototypes are weak predictors of shape similarity judg-
ments

Although contextual prototypes are highly informative for explain-
ing spontaneous judgments of similarity, we predicted that they would
show a clear dissociation from object-based models when explaining
judgments about the visual properties of objects, such as their shapes,
which should be better captured by an object model. To test this
hypothesis, we performed a new set of experiments in which partic-
ipants were asked to perform a multi-arrangement task on the same
sets of stimuli, but with the key difference that participants were
now specifically instructed to judge the similarity of the objects based
on their shapes (Fig. 1). We computed RSA correlations between our
model RDMs and the behavioral RDM from the shape task. Across
two experiments using the ADE20K and COCO stimulus sets, we found
that object-based CNN models strongly outperformed the contextual-
prototype model when explaining shape similarity judgments (Fig. 3B
and Supplementary Fig. S3B). Furthermore, the performance of the
contextual-prototype model on the shape task was dramatically lower
than its performance on the intuitive task. When performing the anal-
yses layerwise, the effects for the contextual prototype model were
consistently low across all layers, whereas the object models were
generally better at higher layers (Supplementary Fig. S4B). Moreover,
variance partitioning analyses showed that nearly all the explained
variance of the contextual prototypes on the shape task was shared with
the object-based models (Fig. 4 and Supplementary Table 2). Thus, not
all dimensions of object similarity are well explained by context. For
the case of shape similarity, there is a striking dissociation between
context- and object-based models.
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Fig. 3. RSA correlations of representational models and behavioral similarity. The top panel shows RSA correlations of model RDMs and the behavioral RDM for the intuitive
similarity task. The bottom panel shows RSA correlations for the shape similarity task. Results are shown for both the ADE20K and COCO experiments. (A) RSA results show that
the contextual-prototype model was similar to or better than object-based models when explaining intuitive similarity judgments in both the ADE20K and COCO experiments (top
panel). (B) In contrast, the object-based models exhibited a strong advantage over the contextual-prototype model when explaining similarity judgments based on object shape. The
violin plots show the mean RSA correlations (central black dots) and bootstrap resampling distributions. The gray lines above each violin plot indicate the noise-ceiling estimates
based on Spearman–Brown-corrected split-half correlations of the behavioral RDMs. *p< 0.05, **p< 0.01, ***p< 0.001.
3.3. Contextual prototypes rival models of distributional semantics

We next sought to determine how our contextual prototypes com-
pare with models of distributional semantics based on the co-occurrence
statistics of objects in images and object names in language, which
have previously been examined as models of contextual representation
in high-level visual cortex (Bonner & Epstein, 2021). To do this, we
examined a model based on object co-occurrences in images, known as
object2vec (Bonner & Epstein, 2021) and another model based on word
co-occurrences in written language, known as word2vec (Mikolov,
Sutskever, et al., 2013). For the intuitive task in both the ADE20K and
COCO experiments, we found that object2vec and word2vec exhibited
strongly significant correlations with the behavioral RDMs and were
either lower than or similar to the performance of the contextual-
prototype model (Fig. 5; see Supplementary Fig. S6 for performance
on the shape task and Supplementary Fig. S7 for participant-level re-
sults). Interestingly, the contextual-prototype model was slightly better
than object2vec in both experiments (though this difference was not
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significant in the participant-level analyses). This suggests that even
though object2vec is based on the co-occurrence of object labels in
annotated images, there may be additional contextual information to
be learned from modeling the entire scene context in which an object is
encountered. For example, some contextual information, like the spatial
geometry of a scene, may not be represented in a co-occurrence model
that treats images as bags of objects.

4. Discussion

We developed a computational approach to learn contextual pro-
totypes that capture the scene associations of objects. Using this ap-
proach, we found that the natural statistics of object context are pre-
dictive of how humans intuitively judge the similarities between real-
world objects. Remarkably, as a computational model of object sim-
ilarity, contextual prototypes rivaled the performance of CNN repre-
sentations of object images and word embeddings of object names.
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Fig. 4. Variance partitioning analysis of representational models. Variance partitioning was used to quantify the shared and unique explained variance for the object image,
contextual prototype, and object-prototype models. Results are shown for both the ADE20K and COCO experiments. (A) Partitioning the explained variance in the intuitive task
showed that the contextual and object-based models explained some portion of shared variance but additionally accounted for a substantial amount of disjoint variance. (B) In
contrast, partitioning the explained variance in the shape task showed that nearly all explained variance for the contextual prototypes was shared with the object-based models
and, furthermore, that the object image model accounted for the most unique variance. Note that variance partition values below 5% are not annotated in this figure but can be
seen in Supplementary Table 2. Total r2 values: ADE20K Intuitive = 0.434, COCO Intuitive = 0.365, ADE20K Shape = 0.213, and COCO Shape = 0.295.
Together, this work develops a novel computational approach to rigor-
ously characterize the statistical associations between objects and their
natural scene contexts, and it shows that these contextual associations
are tightly linked to the core dimensions of object similarity in human
behavior.

4.1. Contextual associations and similarity judgments

Similarity judgments have long been considered a window into
how objects are represented in the mind. They are used in cognitive
science to characterize the representational geometry of objects and
other naturalistic stimuli (Greene et al., 2016; Hebart et al., 2019,
2020; Jozwik et al., 2017; Mur et al., 2013; Peterson et al., 2018;
Tarhan et al., 2021), and they are used in neuroscience to identify brain
regions that support the high-level processing of these stimuli (Dima
et al., 2022; Groen et al., 2018; King et al., 2019; Mur et al., 2013).
While similarity judgments can provide insights into the underlying
dimensions of object representation, our work suggests that the most
important dimensions may emerge not from the objects themselves but
rather from their latent statistical associations. Moreover, our findings
suggest that in neuroscience research, intuitive similarity judgments of
objects may be better suited for identifying brain regions that process
scene contexts rather than the visual forms of objects (Bar & Aminoff,
2003; Bonner & Epstein, 2021; Groen et al., 2018). Consistent with this,
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evidence from fMRI has shown that similarity judgments for objects
are correlated most strongly with scene-selective regions, such as the
parahippocampal place area (King et al., 2019), which have previously
been linked to representations of object co-occurrence and contextual
associations (Bar & Aminoff, 2003; Bonner & Epstein, 2021) rather than
representations of object form.

Other recent work has found that CNNs trained on object classifica-
tion implicitly learn the associations between objects in scenes and are
highly predictive of human judgments of contextual similarity (Aminoff
et al., 2022; Bracci et al., 2022). These findings corroborate the motiva-
tion for our study, which is that CNNs are well-suited for modeling the
rich contextual information associated with objects and, furthermore,
that the contextual information in CNNs is relevant to human behavior.
However, our study addresses two important issues that have not been
explored in previous work. First, we developed a new computational
method for modeling the scene associations of objects without model-
ing the features of the objects themselves. The development of such
methods is crucial given that there are currently few computational
tools for characterizing the natural statistics of object context (Bon-
ner & Epstein, 2021). Second, our work goes beyond the study of
explicit ratings of contextual association and shows that contextual
information strongly predicts similarity judgments even when partic-
ipants are not explicitly cued to think about context. This suggests
that commonly used unguided similarity tasks may reveal more about
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Fig. 5. RSA correlations for contextual prototypes and models of distributional semantics in vision and language. Two models of distributional semantics were examined: object2vec
and word2vec. The object2vec model contains information about the co-occurrence statistics of objects in a database of densely annotated scenes (Bonner & Epstein, 2021). The
word2vec model contains information about word co-occurrence statistics in a large corpus of written language. Results are shown for both the ADE20K and COCO experiments. The
violin plots show the mean RSA correlations (central black dots) and bootstrap resampling distributions. The gray lines above each violin plot indicate the noise-ceiling estimates
based on Spearman–Brown-corrected split-half correlations of the behavioral RDMs. *p< 0.05, **p< 0.01, ***p< 0.001.
the co-occurrence of objects in scenes than about the appearance of
the objects themselves, such as the appearance of their shapes (Jozwik
et al., 2017; Mur et al., 2013; Peterson et al., 2018).

Our findings have connections to an important theoretical dis-
tinction in the semantic memory literature between taxonomic and
thematic similarity (Mirman et al., 2017). Objects that are taxonom-
ically similar come from similar categories (such as a dog and a cat,
or an apple and a pear), whereas objects that are thematically similar
come from similar scenes and events (such as a dog and a leash, or
an apple and a peeler). Evidence from semantic memory studies has
shown that taxonomic and thematic knowledge reflect different modes
of reasoning about the relationships among objects and rely on different
neural substrates (Schwartz et al., 2011). Although this distinction
between taxonomic and thematic knowledge has long been appreciated
in the semantic memory literature, there has been far less consideration
of this distinction in the literature on visual object processing. Our
contextual-prototype model naturally captures the thematic associa-
tions of visual objects using images of their co-occurring scene contexts,
and it may be useful in future work for determining whether the visual
system contains different processing pathways for encoding the the-
matic and taxonomic properties of objects. Furthermore, our findings
suggest that when observers evaluate the intuitive similarities among
visual objects, they may default to thematic reasoning.

4.2. Computational modeling of similarity judgments

Our results highlight the need for better computational approaches
to characterize the latent associations of objects. Previous efforts to
model the representations underlying object similarity have largely
focused on CNN representations of object images, word embeddings
for object names, or human-annotated feature lists (Hebart et al.,
2019; Jozwik et al., 2017; Peterson et al., 2018). Recent work has
developed a data-driven approach to induce object embeddings from
behavioral similarity data and has shown that interpretable dimen-
sions corresponding to perceptual and conceptual object properties
emerge (Hebart et al., 2020). Nonetheless, even with such data-driven
embeddings, one still needs representational theories to make sense
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of them. If one seeks to test a representational theory of contex-
tual or thematic associations, there are few existing models for doing
so (Bonner & Epstein, 2021). This dearth of scene-context models is
particularly striking in contrast to the many models that exist for testing
representational theories of object form based on CNNs or theories
of semantics based on word embeddings. Our procedure for building
contextual prototypes based on CNN representations of scene contexts
demonstrates a powerful new approach for modeling the latent asso-
ciations of objects in natural images. This contextual-prototype model
could be useful for future studies seeking to characterize how object
processing is influenced by the natural statistics of context.

4.3. Varied approaches for assessing similarity

Our work and other recent studies of unguided similarity judgments
raise the question of how participants rank or weight the many possible
dimensions that could be used to evaluate similarity. In unguided
tasks, participants are free to evaluate objects along any dimensions
that come to mind. For example, a participant could evaluate objects
along dimensions related to contexts, shapes, textures, colors, affor-
dances, material properties, and so on. Our findings and previous work
demonstrate that despite the many possible dimensions that one could
consider, the primary dimensions that come to mind in unguided tasks
are generally consistent across individuals (Hebart et al., 2019; Mur
et al., 2013; Peterson et al., 2018). Thus, there appears to be a default
ranking or weighting of the representational dimensions that underlie
human intuitions about object similarity. While our work suggests that
contextual dimensions may be high in this ranking, we know that
there are myriad other types of object similarity that participants could
alternatively consider. A goal for future work is to catalogue these
many possible dimensions of object similarity and to characterize their
relative importance for object-related behaviors.

One approach to cataloging the dimensions of object similarity is
to consider a set of experimenter-defined dimensions and to instruct
participants to specifically evaluate these dimensions. For example, in
our own data, we found that when participants were instructed to

judge similarity based on object shape, the resulting similarity space
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was consistent across participants and differed from that obtained in
the unguided task. However, one does not necessarily have to use
experimenter-defined dimensions. An alternative approach is to ask
participants to evaluate similarity for small groups of objects, as in
the triplet odd-one-out task in Hebart et al. (2019). In such a design,
there will be trials in which contextual similarity is either irrelevant
(e.g., because all three objects are from the same context) or less salient
(e.g., a trial in which two of the three objects are bright red). Another
possibility is to perform a version of the multi-arrangement task in
which participants are asked to group objects in as many distinct ways
as possible. For example, a participant might first group the objects
by contextual similarity, and then on the second iteration, the objects
might be grouped by shape similarity, and then color similarity, and
texture similarity, and so on. Using such a design, it may be possible to
discover a rich variety of similarity dimensions and to determine their
relative rankings.

Our findings suggest that an important direction for future work is
to better understand how similarity judgments might be affected by the
design parameters of behavioral tasks. In our work, we found that when
participants evaluated similarity in a multi-arrangement task—which is
one of the most commonly used methods in the field—their responses
resembled contextual similarities. However, an interesting question is
whether the multi-arrangement task might implicitly draw attention to
contextual information. There are at least two properties of the multi-
arrangement task that could potentially call attention to context. The
first property is the spatial nature of the task, in which participants
arrange objects on a 2D spatial display so that nearby objects are
more similar. Perhaps when participants are asked to arrange objects
in space, they naturally think about the spatial contexts in which
the objects typically occur. The second property is the large number
of stimuli on the display. When participants view an array of many
objects, they may be inclined to think about how these objects would
typically be grouped if they were encountered under natural conditions.
Thus, it is an open question whether contextual information would
drive similarity judgments as strongly if the task were not spatial in
nature and if the number of items on the display were decreased. A task
that fits this description is the odd-one-out task Hebart et al. (2019),
and it would, thus, be informative in future work to directly compare
unguided similarity judgments on the same objects when using the
multi-arrangement and odd-one-out tasks.

4.4. Future directions and limitations

A goal for future work is to elucidate the specific contextual reg-
ularities that underlie the performance of our contextual-prototype
model. We know that contextual prototypes capture the latent statis-
tical regularities of the natural scene contexts in which objects are
encountered. What we do not yet know is what specific aspects of
scene context are most important for these contextual prototypes. For
example, are contextual prototypes best explained in terms of semantic
scene categories, object co-occurrence statistics (Bonner & Epstein,
2021), functions and affordances (Bonner & Epstein, 2017; Greene
et al., 2016), spatial layout (Brady et al., 2017; Oliva & Torralba,
2007) or other possible factors? Future work could seek to quantify
these properties in natural images and to determine which, if any, best
explains behavioral similarity judgments.

Another exciting direction for future work is to understand the level
of specificity of contextual effects in object processing. For example,
when we view objects, does the brain represent contextual information
at the level of individual items (e.g., your own car), basic-level object
categories (e.g., all cars), or superordinate categories (e.g., all vehi-
cles)? Furthermore, what level of contextual specificity best explains
behavior on the unguided similarity judgments investigated here? To
systematically address this question, we would need a dataset in which
the stimuli were selected so that one could model contextual informa-
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tion at different levels of specificity. While our data has some examples
of sets of stimuli that can be naturally grouped into superordinate
categories, such as cars and trucks, this is not generally true for most
of our stimuli (e.g., clock, handbag, scissors). Thus, it remains an open
question whether we could obtain similar results if our contextual
prototype representations were modeled at a more superordinate cat-
egory level or, alternatively, whether the contextual prototypes might
perform even better if they were modeled at a more subordinate level.

Our findings also highlight an important methodological considera-
tion when investigating the statistical regularities of objects in natural
images. Namely, there is a tradeoff between image databases that are
best suited for characterizing contextual regularities versus those that
are best suited for characterizing object regularities. This is because
scene-centric databases contain rich contextual information, but the
objects in scene images are often zoomed-out, making it difficult to
capture their detailed properties. In contrast, object-centric databases
contain high-quality, close-up images of objects but lack rich surround-
ing contexts. We saw such a tradeoff in our own analyses. Specifically,
we found that the relative performance of the object-prototype model
was substantially better when using images from the more object-
centric COCO database rather than the more scene-centric ADE20K
database. We suggest that attaining a complete picture of the statistical
regularities of objects in natural images will require approaches that
combine the strengths of both object-centric and scene-centric datasets.

There are important limitations to our findings to keep in mind.
First, our findings do not account for all aspects of object similarity.
Indeed, similarity is a task-dependent construct, and there are many
possible dimensions along which object similarity could be evaluated.
Our work focuses on the primary dimensions of object similarity that
come to mind in an unguided task. Second, the multi-arrangement
task used here would be challenging to scale up to more than a few
hundred stimuli. In the multi-arrangement task, all stimuli are dis-
played on the screen simultaneously, which allows participants to get
a global view of the stimulus space and to consider its most important
organizing dimensions. However, the downside of this task is that it
becomes overwhelming and impractical beyond a few hundred stim-
uli. Other similarity tasks, like the triplet-odd-one-out task, also face
challenges with data scaling. When considering datasets on the order
of thousands of stimuli or more, a promising alternative is to build
computational models that infer the latent representational dimensions
of object similarity from limited behavioral data (Hebart et al., 2020).

4.5. Conclusion

In sum, we developed a computational approach to characterize the
high-level scene associations of objects in natural images, and we found
that these scene associations predicted how participants spontaneously
judged the similarities between objects. Surprisingly, this means that
when examining computational models of object similarity in unguided
tasks (Jozwik et al., 2017; Mur et al., 2013; Peterson et al., 2018), the
models do not need to see the objects themselves—all they need are the
contexts in which the objects are typically encountered. These findings
support the theory that object representations are fundamentally inter-
twined with representations of their associated contexts (Aminoff et al.,
2022; Aminoff & Tarr, 2015; Bar & Aminoff, 2003; Bonner & Epstein,
2021; Davenport & Potter, 2004; Oliva & Torralba, 2007). Moreover,
our novel method for modeling the contextual associations of objects
opens new avenues of research on the statistical underpinnings of
object representations in brains and machines.
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