
A sparse null code emerges in deep neural networks

Brian S. Robinson1, Nathan Drenkow1, Colin Conwell2, and Michael F. Bonner2

1 Research and Exploratory Development Department, Johns Hopkins University Applied Physics
Laboratory, Laurel, MD

2 Department of Cognitive Science , Johns Hopkins University, Baltimore, MD
1{ brian.robinson, nathan.drenkow } @jhuapl.edu

2{ colinconwell, mfbonner } @jhu.edu

Editors: Marco Fumero, Emanuele Rodolà, Clementine Domine, Francesco Locatello, Gintare
Karolina Dziugaite, Mathilde Caron

Abstract

The internal representations of deep vision models are often assumed to encode
specific image features, such as contours, textures, and object parts. However, it is
possible for deep networks to learn highly abstract representations that may not be
linked to any specific image feature. Here we present evidence for one such abstract
representation in transformers and modern convolutional architectures that appears
to serve as a null code, indicating image regions that are non-diagnostic for the
object class. These null codes are both statistically and qualitatively distinct from
the more commonly reported feature-related codes of vision models. Specifically,
these null codes have several distinct characteristics: they are highly sparse, they
have a single unique activation pattern for each network, they emerge abruptly
at intermediate network depths, and they are activated in a feature-independent
manner by weakly informative image regions, such as backgrounds. Together,
these findings reveal a new class of highly abstract representations in deep vision
models: sparse null codes that seem to indicate the absence of features rather than
serving as feature detectors.

1 Introduction

When seeking to interpret the internal representations of deep vision models, it is often implicitly
assumed that the representations encode image features, such as edges, textures, shapes, and objects
(34; 26; 4; 25; 3). This assumption underlies many common approaches for neural network interpre-
tation, such as the selection of strongly activating natural images, 2D tSNE embeddings of image
representations, activation maximization through image synthesis, and saliency maps.

However, an alternative possibility is that some aspects of neural network representation encode
highly abstract information that is not linked to any specific image feature and would, thus, appear to
have incoherent selectivity when examined with standard visualization methods. Here we present
evidence for one such abstract representation in deep vision models. Specifically, by examining
vision transformers and a modern convolutional architecture, we reveal a class of representations that
respond in a feature-independent manner to image regions that are weakly informative for identifying
the central object category, such as backgrounds and large homogeneous patches of texture. We
refer to this class of representations as “null codes” because they appear to indicate non-diagnostic
parts of the image. We also demonstrate these null codes are statistically distinct from other network
representations due to their characteristic high activation norms and sparsity.
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These sparse null codes constitute a qualitatively different phenomenon than the commonly observed
image-feature representations reported in previous work, and they motivate a new perspective on the
internal representations of vision models and methods for network interpretation.

2 Approach

In the analysis of this work, we inspect the embeddings of a range of neural networks, including three
different transformer architectures and a recent performant convolutional neural network. The three
different models with transformer architectures utilized for analysis span differences in training and
scale: 1) an original ViT model (Base/16) with patch-wise image tokenization trained on ImageNet
(9), 2) the same ViT model trained with Contrastive Language-Image Pretraining (CLIP) (29), and 3)
Compact Convolutional Transformer, a more parameter-efficient model with a convolutional tokenizer
before the transformer layers and sequence pooling as a final operation before classification (CCT-
14/7×2) (13). The convolutional neural network examined here is ConvNext, which modernizes a
standard ResNet (14) toward the design of a transformer and achieves competitive accuracy with
modern vision transformers networks (22). For analyzing the intermediate embedding of these
networks, we utilize image probes from the Microsoft COCO dataset (21).

In transformer networks, we examine intermediate embeddings, x ∈ RD,N , with N tokens and D
dimensions. Our analysis characterizes each feature vector with dimension D, across each image
probe, token, and layer. Note that for the ViT and ViT-CLIP networks that have a class input token,
this class token was not used in our analyses. Summary statistics for the ViT-CLIP characterization
were computed on 500 different images. However, the observed trends were identical to those for the
first 24 images (which already contain 56,448 individual features vectors across images, layers, and
tokens). For expediency, subsequent analyses on different networks are performed with the first 24
images which entail an analysis of over 50,000 feature vectors for each network model.

We measure the sparsity of activation vectors using a standard measure known as kurtosis, k (27; 15),
which characterizes how heavy-tailed a distribution is by measuring the fourth moment relative to the
variance squared, with k > 0 for a distribution that is sparser or has a heavier tailed distribution than
a Gaussian distribution. Note that kurtosis is a relative measure of sparsity as the feature vectors do
not have dimensions with values exactly equal to zero.

As opposed to the transformer network, which has the same number of tokens and dimensionality
throughout all layers, the ConvNext architecture has four stages with varying feature map size and
number of channels. However, the third stage is a natural choice to analyze in detail for comparison
because 1) the majority of the network’s blocks are at this stage (27 as opposed to 3 blocks in the other
stages) and 2) the 14×14 size of the feature maps corresponds to the same size and image locations
as the 196 tokens analyzed in the transformer networks. The feature maps have shape D × 14× 14
and feature vectors can be comparably used for analysis with all of the channels at a specific location
(which contain D elements). The dimensionality of the ConvNext feature map embeddings in each
block can thus be similarly reshaped to D×N , where D is the number of channels, N is the number
of feature map locations.

3 Observation of a sparse null code

3.1 Main Observations

In our analysis of feature vectors across a range of network variants, we denote five repeated and
previously unreported observations in relation to a sparse null code:

1. Sparse patterns emerge abruptly at an intermediate layer depth.

2. There is a bimodal distribution of sparsity across feature vectors.

3. Sparse patterns are maintained at specific locations across layers and correspond to back-
grounds or weakly informative portions of images.

4. The sparsest feature vectors for each image presentation have approximately the same
activation pattern or "sparse code".

5. All of the analyzed highly sparse feature vectors have high similarity with the sparse code.
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Figure 1: A subset of highly sparse feature vectors emerge in transformer networks. A. The
distribution of kurtosis sparsity measurements for each token across 24 presentations for the three
transformer model architectures evaluated. B-C. Activation patterns (Z-score) from the sparsest and
median sparsity feature vectors for each model. Sparsity measured with kurtosis (k) is displayed for
each pattern to visualize how kurtosis relates to sparsest and median feature vector distributions of
each model.

3.2 Sparse codes in network variants

Across all three networks with a transformer architecture, a stark increase in measured sparsity is
observed for a subset of feature vectors (Fig 1). By visual inspection, many of the feature vectors
have sparse-like activation patterns (Fig 1 B-C), with most dimensions close to zero and a subset of
dimensions with much larger magnitudes.

Our most in depth characterization is with the ViT-CLIP model, where we characterize these sparse
feature vectors for individual images (Fig 2) as well as in aggregate across 500 different images (Fig
4). By visual inspection, we can see that these sparse patterns are maintained at specific tokens across
layers (Fig 2B) and that these tokens correspond to background or weakly-informative portions of the
input images (Fig 2C). Perhaps most surprisingly, however, is that the sparsest feature vectors for
each image presentation appear to have the same activation pattern or "code" (Fig 2D).

.

Figure 2: In ViT-CLIP, a repeated sparse code is observed in non-diagnostic token locations. A.
Example presentation images from center-cropped MSCOCO dataset used as network probes for
each row. B. Sparse patterns are maintained at specific tokens across layers. C. At an intermediate
depth of layer 9, the 196 tokens which correspond to image patch inputs are reshaped to a 14×14
matrix. D. The Z-scored feature vector corresponding to the sparsest activation pattern is almost
identical by visual inspection between images.
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Figure 3: Feature vectors in ConvNext share similar overall observed sparsity properties as seen in
the Transformer networks where 1) sparse patterns emerge abruptly at an intermediate layer depth,
2) these sparse patterns are maintained at specific locations across layers, 3) sparse feature vectors
correspond to background or non-salient portions of the input images, and 4) the sparsest feature
vectors for each image presentation appears to have the same activation pattern or "code". A-D. As in
Fig. 2

The feature vectors in ConvNext share similar overall observed sparsity properties (Fig 3) as seen
in the transformer networks. Notable differences include the increased prevalence of these sparse
feature vectors and how they seem to emerge at all background locations. The repeated sparse code is
also mostly confined to a single channel (Fig 5).

It is not only the sparsest feature vectors though, for each image that have the same pattern. When
analyzed over 500 image presentations for ViT-CLIP, all highly sparse activation patterns appear to
resemble this code (Fig 4). An additional characteristic of these feature vectors is that their sparsity
has a distinctly bimodal distribution (Fig 4A). Furthermore, because all of the sparsest feature vectors
for each image are almost identical (average pair-wise correlation coefficient of 0.996), we can use
the average of these sparsest feature vectors as the sparse code for downstream analysis.

In ConvNext (Fig 5) as well as the ViT and CCT transformer model architectures (Fig A.1), similar
trends are observed as with ViT-CLIP, with a bimodal distribution of sparsity in feature vectors,
high similarity between the sparsest codes, and all of the highly sparse feature vectors having high
similarity with the sparse code. For ViT and CCT, there is slightly more variability in the range of
sparsity values and the degree to which the sparsest feature vectors are all approximately the same
(0.927 and 0.979 average pair-wise correlation coefficient for ViT and CCT respectively as compared
to 0.996 for ViT-CLIP). Note that for ViT and CCT, the first and last layers are excluded from this
characterization. Overall, between analyzed transformer and convolutional models, we find similar
trends in the emergence of a repeated sparse code as outlined in Section 3.1.

3.3 Characterization of the sparse code

To investigate how these sparse codes emerge and are utilized we characterize how model weights
relate to these sparse codes across network depth. Our approach focuses on the measuring the
similarity of the input and output weights of each component in each layer to the sparse code. The
detailed approach and results for how these sparse codes relate to input and output network weights
for each component in Transformer and ConvNext models is outlined in A.2, but there are a few
high-level properties that describe how these sparse codes emerge and are utilized. First and foremost,
we find evidence that these sparse codes are unlikely to emerge via an isolated anomaly in network
weights, as there are consistent properties across multiple layers for how network weights in each
component are tuned to input and output these sparse codes. Additionally, for the input weights
to the multi-headed self-attention (MHSA) in transformers, the weights which are utilized in the
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Figure 4: All of the highly sparse feature vectors correspond to the same sparse code in ViT-CLIP
across 500 input images. A. The measured sparsity for each feature vector across all layers has a
bimodal distribution. B. For every pair-wise combination of the sparsest feature vector in each image
presentation, there is a high Pearson’s correlation coefficient value, with an average of 0.996. C. The
average of all of the highly correlated sparsest feature vectors (Z-scored) is used as the "sparse code"
for subsequent analysis. D. In a representative layer (layer 9), cosine similarity is shown between
every feature vector across all probe images and the sparse code shown in C. E. As in D, but across
all layers, where the average and standard deviation is shown for each of the binned sparsity values
from A.

Figure 5: In the ConvNext model, similar trends are observed as with Transformer models with a
bimodal distribution of sparsity in feature vectors, high similarity between the sparsest codes, and all
of the highly sparse feature vectors having high similarity with the sparse code. A-E. As in Fig 4
with 24 input images.

nonlinear calculation of attention (query and key weights) are more tuned to the sparse code than
the weights that are only involved in a linear transformation (value weights). In both transformer
and convolutional networks, input weights of each component become more tuned to the sparse null
code in final layers or blocks. We additionally investigate whether sparse codes interact with isolated
dimensions in network layer components. For the majority of components, we find that this is not
the case, as most network weights have vectors which contain a mix of positive and negative tuning
in relation to these sparse null codes, suggesting a distributed interaction of these sparse codes on
network activity. An exception to this is observed in the output weights of the ViT-CLIP MLP, where
a small subset of weight dimensions are highly correlated with the sparse code, suggesting an isolated
subset of dimensions in the MLP can play an out-sized role in generating these sparse codes. Overall,
these properties describe systematic trends in how the sparse codes relate to input and output weights,
yielding insight into how these sparse codes emerge and are utilized across network components.

We observe additional properties of the sparse code that are unique to specific investigated models.
While both ConvNext and ViT-CLIP both have an overall bimodal distribution of sparsity in feature
vectors across all layers and blocks, ConvNext has a unimodal distribution in each block and ViT-
CLiP maintains a bimodal distribution within each individual layer (Fig 6A-B). An additional direct
relationship is observed between the magnitude of each weight vector and the level of sparsity for
ViT-CLIP, which is maintained between layers 6C-D). While an overall linear relationship between
magnitude and sparsity is also observed for ConvNext, the relation is more apparent in ViT-CLIP.
These observed differences as well as the variation in levels of sparsity between models motivates
future investigation.

As outlined above, sparse codes are observed at specific locations, but it is unclear to what extent
these codes relate to the remaining feature vectors. To investigate this, the sparse code calculated for
each model is compared to the principal components of all of the feature vectors for each layer across
500 probe images. As shown in Fig 7, for all models, the sparse code has a high cosine similarity
to the first principal component of the feature vectors in most layers after the sparse code emerges.
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Figure 6: Layer-specific sparsity distributions of feature vectors as well as a direct relation between
sparsity and the magnitude of feature vectors. A-B. ConvNext (A) has a unimodal distribution of
sparsity across feature vectors in each block, while ViT-CLiP (B) maintains a bimodal distribution
within each individual layer once sparse codes emerge. Distributions are depicted with kernel density
estimate plots. C. A direct relationship is observed between the magnitude and sparsity of feature
vectors for a representative layer (layer 7). D. As in C, but across all layers, where the average and
standard deviation is shown for each of the binned sparsity values (bin width = 50).

Figure 7: Sparse codes have high similarity to the first principal component of all feature vectors at
layers after the sparse code emerges.

The high similarity between the sparse code and the first principal component demonstrates that this
sparse code has a major influence on any analysis of the representations in these models, such as
analyses of representational similarity across networks or between networks and brains (17).

3.4 Interpretation as a null code

Two main observed properties lead to the interpretation of the repeated sparse code as a "null code".
First, by inspection, the locations of these emergent sparse feature vectors correspond to background,
non-diagnostic image regions. This is observed for both transformer (Fig. 2) and convolutional (Fig.
3) models across layers and blocks once these repeated sparse codes emerge. Second, the ubiquity of
these null codes in feature vectors across presentations and at different spatial locations demonstrates
their independence from coding specific input features.

3.5 A computational role of null codes in transformers with LayerNorm

In addition to having properties that suggest a null code, we identify a computational mechanism
with LayerNorm in transformer networks that demonstrates a way in which the presence of these null
codes can act to form an implicit mask. In transformer networks, LayerNorm is the first operation
before the MLP or MHSA in each layer. With LayerNorm, a large value in a subset of dimensions
will effectively squash the values in remaining dimensions. While a large activation pattern in any
dimension will induce competition and the modulation of other dimensions, there is a computational
advantage of having a common sparse unique code (which utilizes a small subset of dimensions) to
trigger the modulation of other dimensions. By utilizing a small subset of dimensions, there will be
less interference with other input-related representations. An example of the null code being used as
an implicit mask can be seen in Fig 8. Given the distributed tuning of network weights to the null
code as outlined in A.2, however, it is likely that the computational mechanism of null codes as a
direct implicit mask is only one way in which this sparse null code may be utilized.

6



Figure 8: A computational mechanism with LayerNorm in Transformer networks demonstrates a
way in which the presence of a null code can impose an implicit mask. A. Example image probe.
B. In an example with a D ×N embedding of layer 9 in ViT-CLIP, the distribution of the null code
across the N token locations can be visualized as the activation level for the single dimension of D
that has the highest magnitude in the null code. Note that the range in the visualization is clipped at a
value of 5 for clarity. C. In the embeddings at a different dimension of D, certain token locations
have high activations at the same locations as where the null code is present (circled). D. For the
same dimension as depicted in C, the relative activation levels across all token locations is modified
after applying LayerNom. Token locations where the null code is also present at high magnitudes
(circled) are effectively squashed because LayerNorm is applied independently for each feature vector.
The converse effect also occurs, where token locations that do correspond to salient image features
locations (without the presence of a null code) have higher relative activation levels after LayerNorm.

4 Discussion

The emergence of sparse null codes in deep neural networks has implications in network design, inter-
pretability, and enhancing a fundamental understanding of these systems. One of the most direct ways
in which these sparse null codes may influence network design is through informing the development
of normalization techniques (2). For example, while modifying LayerNorm to GroupNorm has been
investigated in relation to stabilizing training and informative propagation (23), the interaction of
LayerNorm with a subset of null dimensions suggests an additional theoretical tool that can be used
to augment or regularize normalization. Furthermore, the location and prevalence of LayerNorm
has shown to be critical in performant networks ((32; 22), which could be further investigated in
relation to these sparse null codes. For informing network design, quantifying sparse null codes may
be a useful tool that can be investigated more generally in relation to performance. Analysis of the
location of sparse null codes may also be used as a tool to augment existing interpretability methods
(25; 3; 5; 1) to characterize which input features are being utilized in computation.

There are several ways in which these sparse null codes may contribute to our fundamental under-
standing of modern neural networks. While there is a wide field of research investigating sparsity
in neural networks, our work is most related to sparsity in network activation (19; 20). Typically,
however, research on investigating sparse network activation is focused on absolute sparsity by focus-
ing on areas of the network which have ReLU units (20) or impose some type of k-winner-take-all
nonlinearity (24), rather than evaluating relative levels of sparsity such as with a measure of kurtosis.
Additionally, our observation that there is a single highly sparse code is a qualitatively different
phenomena than the general investigation of sparse codes in relation to topics such as compressed
sensing (8), dictionary learning (10), and superposition (11).

These sparse null codes have implications for the analysis and interpretation of neural network
representations. For example, any downstream analyses that rely on the geometrical properties of
neural network representations such as brain representation similarity analysis (33; 16; 6; 17), will be
influenced by these repeated sparse codes. Furthermore, the relevance of these sparse null codes to
the overall neural network representations is substantial as the sparse null code approximates the first
principal component of network representations in layers where the null code is present across all
analyzed models.

The sparse codes observed in this work appear to be related to what have been called "outliers" in
recent analyses of other transformer-based models. The most related observation is in concurrent
work which identifies high-norm tokens in low-informative background areas of images in vision
transformer based models (7). These observations (which identify outliers in DeIT, OpenCLIP, and
DINOv2 models) are complementary to our findings and provide additional support for the generality
of the trends observed here. Our work further establishes that outlier tokens in background areas
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are not only characterized by high norms but also by a single, shared sparse code. Our report also
demonstrates that these sparse null codes can emerge in convolutional architectures and are not
specific to transformers.

Other recent findings focus on outlier dimensions in transformer-based language models (12; 31; 18;
28; 30). The potential relationship between the sparse null codes observed in our work and the outlier
dimensions observed in transformer-based language models remains an open question for future
work, but, nonetheless, evidence for outlier dimensions in language models suggests the possibility
that sparse null codes may be a more general phenomenon of neural networks that extends beyond
vision models.

In this work, we identified a mechanism for how these sparse null codes can interact with LayerNorm
in transformer networks to suppress feature activation in non-salient image locations. This LayerNorm
mechanism may be complementary to additional ways in which the sparse null code can influence
network activity. Supporting evidence of this view includes our observation that the query and key
weights in the ViT-CLIP model had higher absolute levels of tuning to the null code, but with a mix
of positive and negative values across a range of output dimensions, suggesting a distributed role of
the null codes in the overall calculation of attention.

Perhaps the most surprising aspect of our results is the starkness with which this sparse null code
emerges. In all of the models we have investigated, for every presentation, a highly consistent sparse
code emerges at multiple layers. Our analyses show that these sparse null codes are present in some
of the most popular models used by researchers. Interestingly, a sparse null code emerges even
though there are fundamental differences in architectural backbone (convolutional and transformer)
as well as training procedure (supervised vs. contrastive language image training). These sparse null
codes also suggest that there may be implicit forms of attention calculation in neural networks (as
opposed to explicit multi-headed self-attention). In sum, we identify and characterize a new class
of highly abstract representations in deep vision models that have implications for network design,
interpretability, and for theories of how these systems operate.
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A Appendix

A.1 Sparse Repeated Code Characterization in ViT and CCT Transfomer Networks

In ViT and CCT transformer models, similar trends are observed (Fig A.1) as with ViT-CLIP with a
bimodal distribution of sparsity in feature vectors, high similarity between the sparsest codes, and all
of the highly sparse feature vectors having high similarity with the sparse code.

A.2 Characterizing how sparse repeated codes emerge and are utilized

Measuring input and output weight tuning to the sparse code in Transformers To investigate
how these sparse codes emerge and are utilized, we characterize how these sparse codes relate to the
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Figure A.1: In ViT and CCT Transformer model architectures, similar trends are observed as with
ViT-CLIP with a bimodal distribution of sparsity in feature vectors, high similarity between the
sparsest codes, and all of the highly sparse feature vectors having high similarity with the sparse code.
A-E. As in Fig 3. with 24 input images.

input and output network weights in across the tranformer architecture. In transformer networks,
each layer contains a multi-headed self-attention (MHSA) component and a multi-layer-perceptron
(MLP) component. Given a shared embedding size of N ×D, the input weights for each of these
components is size D×Din and the output weights for each of these components is Dout×D. Thus,
the input and output network weights of each component are composed of Din and Dout weight
vectors which define the input and output linear projections of each component respectively. The
Din of the MHSA can be further sub-divided into the query, key, and value weights which perform
distinct roles in processing input into the MHSA. To quantify the relation between the sparse code
and these input or output weight vectors, we calculate the cosine similairity between the sparse code
and all input or output weight vectors in the network (referred to as sin and sout), which is a measure
of the tuning of these weight vectors to the sparse code. Note that sin and sout are vectors with Din

and Dout elements respectively.

Sparse code weight tuning in ViT-CLIP An example of this sparse code weight tuning characteri-
zation can be found in Fig A.2, which demonstrates differences in trends between how these networks
weights are input and output in the MHSA and MLP for a specific network layer. We summarize
the weight tuning properties at each layer by taking the overall magnitude (||sin|| and ||sout||) and
evaluating the number of times sin or sout exceeds a threshold as compared to 5 different shuffled
versions of the null code (Fig A.2).

We identify properties in this tuning that is consistent between layers (Fig A.3). The query and key
MHSA input weight vectors are consistently more tuned to the sparse codes than the value weight
vectors. Additionally, the MLP input weight vectors are consistently less tuned to the sparse code at
earlier layers of the network. The MLP has the unique properties of having a small number of output
weight vectors that are highly tuned to the null code across layers (Fig A.3 E), but both the MLP and
MHSA have output weights that are consistently tuned to the null code over several layers in the
network (Fig A.3C-D).

Measuring input and output weight tuning to the sparse code tuning in ConvNext For analyzing
how the sparse code is input and output across ConvNext blocks (Fig A.4), we can leverage the
observation that ConvNext’s sparse code is mostly confined to a single channel, and will refer to this
channel as the "null" channel for subsequent analysis. Instead of measuring weight vector tuning
by calculating the cosine similarity of the sparse code to each weight vector, we can more simply
compare the null channel weight in each weight vector to the weights in the remaining channels. Note
that taking the value of a single null channel in the input or output weights has Din or Dout elements
respectively, comparable to the cosine similarity measurement used for the Transformer architecture.
In order to exclude channels that may be slightly tuned to the null code in our comparisons, we
compare the null channel to the 90% of channels that have the smallest magnitude in the ConvNext’s
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Figure A.2: Differences in the tuning of the MHSA and MLP input and output weight vectors to
the sparse code is observed. A-D. The cosine similarity is measured between the sparse code and
each input and output weight vector of the MHSA and MLP components. Each weight dimension
across the x-axis corresponds to a unique weight vector that is measured in the MLP and the MHSA.
Q,K, and V labels correspond to query, key, and value MHSA input weights respectively. A shuffled
version of the sparse code is used for comparison.

Figure A.3: Across layers, consistent differences in the tuning of the MHSA and MLP input and
output weights to the sparse code is observed. A-D. The magnitude of weight tuning is measured for
each layer (a summary of tuning measurements depicted for a single layer in Fig A.2). Black error
bars represent maximum and minimum values measured for five random shuffles of the sparse code.
E. The MLP has the unique properties of having a small number of output weight vectors that are
highly tuned to the null code (not observed in the MHSA or any of the shuffles of the sparse code).

average sparse code. Due to architectural differences, inputs to each ConvNext block utilize a single
depthwise convolutional filter with shape D × 7× 7, which can be related to our previous analysis
of having Din =49 total weight vectors (7× 7) linearly projecting feature vectors as input to each
block.

Sparse code weight tuning in ConvNext Unlike the collection of weight vectors that linearly
project feature vectors as input in Transformer components, the weight vectors in each convolutional
filter have a spatial correspondence. A notable trend that we observe is that in the latest blocks (last 3
out of 27), the input convolutional filter weights become sharply tuned in the null channel (Fig A.4 A).
The embeddings after applying the convolutional filter in a block is still shape N ×D, with N total
feature vectors and we can compare the magnitude of the null channel activation to the remaining
channel activations to quantify how the null code is input in each block for subsequent computation.
We find that in the final blocks that have the sharper convolutional features, the null channel activation
is higher than any of the other channels (Fig A.4B). An interpretation of this observation is that while
the sparse codes emerge around block 9 out of 27, it is not until the final few blocks that the null code
dominates the embeddings that after the application of the convolutional filters. For quantifying how
these null codes relate to ConvNext block output weights, similar to the consistent null code output
tuning of ViT-CLIP across layers once the null code emerges, the MLP in ConvNext has weights
that are consistently tuned to the null channel (as opposed to remaining channels) across blocks (Fig
A.4C). Note though, unlike the MLP in ViT-CLIP, we do not observe a small number of output weight
vectors that are highly tuned to the null code.
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Figure A.4: Sparse code input and output tuning in ConvNext. A. Across blocks, the 7× 7 slices of
the convolutional filters corresponding to the null channel display spatial sharpness focused on the
center location in the final blocks. B. In the network embeddings as a response to an input probe after
the convolutional filters, null channel activation is higher than any of the other channels at the final
blocks. C. The output weights for each ConvNext block are consistently tuned to the null channel (as
opposed to remaining channels) across blocks as measured by relative magnitude of weights between
channels.
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